baudot Documentation
Release 0.1.1.post2

Author

Mar 17, 2019

Contents:

1 About this library and the Baudot code
1.1 Whatisthe Baudotcode?
1.2 Howdiditwork?
1.3 So, why this library?,
1.4 MOIereSOUrCES . . v v v v v v v e e e e e e e e e e e e
2 User Guide
2.1 Library walk-through
22 Basicusage
23 Examples e e
3 API Reference
3.1 baudot e
32 baudot.core e e
3.3 baudot.codecs
34 baudothandlers.
3.5 Dbaudot.exceptions oo
4 Indices and tables
Python Module Index

A~ B W WW

AN L W

baudot Documentation, Release 0.1.1.post2

Baudot is a Python library for encoding and decoding 5-bit stateful encoding.

This library is named after Jean-Maurice-Emile Baudot (1845-1903), the French engineer who invented this code. The
Baudot code was the first practical and widely used binary character encoding, and is an ancestor of the ASCII code
we are familiar with today.

Contents: 1

https://en.wikipedia.org/wiki/%C3%89mile_Baudot
https://en.wikipedia.org/wiki/Baudot_code

baudot Documentation, Release 0.1.1.post2

2 Contents:

CHAPTER 1

About this library and the Baudot code

1.1 What is the Baudot code?

The Baudot code was the first (or at least the first practical) fixed-length character encoding to be used widely in the
telecommunications industry. This system, invented and patented by the French engineer Jean-Maurice-Emile Baudot
in 1870, was intended as a replacement for Morse code when sending telegraph messages. It allowed the use of a
machine (also patented) to read the messages automatically.

However the code still had to be composed manually; in 1901 the process was refined by the American engineer
Donald Murray, so that it could be easily composed on a typewriter-like machine. The code was also modified to
reduce and optimize the wear on the tape-punching mechanism. This system, known as the Baudot-Murray code or
ITA2, was even more widely adopted and vastly used through World War II.

This new standard was eventually one of the bases for the design of the ASCII encoding that we are now familiar with.
In retrospective, the legacy of the Baudot and Murray codes is immense, though they are rarely used today.

1.2 How did it work?

The Baudot code (and Baudot-Murray afterward) is a 5-bit stateful binary code. This is a modern description though,
since at the time these “bits” would have just been holes in paper tapes.

Because each line of tape can hold five holes/bits, that means that the code allows 32 possible combinations per
character. This however is obviously not enough to hold the 26 letters of the alphabet plus ten digits, let alone other
symbols. Baudot’s solution was to use special “shift” characters, which would indicate whether the following codes
(until the next shift) were letters or numbers (and symbols). Hence why it is called a “stateful” encoding. This is
unlike ASCII and its successors, where each character has its unique code.

The Baudot-Murray code extends on the idea of control characters, introducing codes such as “Carriage Return”, “Line
Feed”, “Enquiry” and “Bell”. There even exists a variant of ITA2 for Russian use, which introduces a third shift that
exposes a table of cyrillic characters.

baudot Documentation, Release 0.1.1.post2

1.3 So, why this library?

I got interested in 5-bit encoding while learning about the now famous code breaking efforts lead by the United
Kingdom during WWIL. Such tapes were even an essential component of Colossus, the first electronic computer
which was designed for decrypting the German Lorenz cipher.

At first I thought decoding this could be a fun exercise, then discovered that I could not find any Python library on
PyPi for doing that. So here I am, doing this for fun (and so that I could call dibs on the “baudot” name).

Quite honestly, I cannot think of many good use cases for this library. Reportedly, ITA2 is still commonly used in the
radio amateur community, so that could be a potential one. Or this could be used to make a simulation of the Colossus
computer.

1.4 More resources

* Baudot Code - Wikipedia

* 5 Hole Paper Tape - Computerphile

4 Chapter 1. About this library and the Baudot code

https://en.wikipedia.org/wiki/Colossus_computer
https://en.wikipedia.org/wiki/Baudot_code
https://youtu.be/JafQYA7vV6s

CHAPTER 2

User Guide

2.1 Library walk-through

baudot . core This module holds the stateful encoding/decoding logic. Its functions are directly available in
baudot for convenience.

baudot . codecs This package hosts the lookup tables, used for encoding/decoding single characters. Standard
ITA1 and ITA?2 tables are built-in, and the tools for making custom codes are also provided.

baudot . handlers This package provides writer and reader classes for a variety of input and output formats.

baudot . exceptions As its name suggests, this module defines the library’s exceptions. All are subclasses of
BaudotException.

2.2 Basic usage

The core functions for any operation in this library are baudot . encode () and baudot . decode ().
To work, both require three elements:

1. atext input (for encoding) or output (for decoding) stream

2. acodec object

3. areader (for decoding) or writer (for encoding) object
This is because overall, baudot accomplishes two tasks (and their inverse):

1. reading 5-bit codes from custom input formats,

2. converting 5-bit codes to unicode characters.

Codec objects are instances of baudot . codecs.BaudotCodec (or its sub-classes, to be more specific). A codec
is a static object capable of converting characters to codes and back. This library includes a few default codecs but
others may be user-defined.

baudot Documentation, Release 0.1.1.post2

Readers and writers are instances of baudot.handlers.BaudotReader and baudot.handlers.
BaudotWriter respectively. Currently, all the handlers in this library require a stream to be passed at instantiation,
that they will read from or write to. This mimics the way it’s done in the standard library module csv.

The reason I/O in this library depends on streams is so that many types of inputs and outputs are natively sup-
ported, such as files or stdin and stdout. Or maybe odd devices that natively support Baudot code! This
however can be inconvenient for small tests, so two helper functions baudot.encode_str () and baudot.
decode_to_str () are available for using strings as text input. Maybe the handlers could be fitted with a similar
feature in the future.

Please keep in mind that this project is very young, and that its API is most likely ill-designed at this point. Suggestions
are welcome!

2.3 Examples

2.3.1 Encoding example

from io import StringIO
from baudot import encode_str, codecs, handlers

input_str = 'HELLO WORLD!'

with StringIO() as output_buffer:
writer = handlers.TapeWriter (output_buffer)
encode_str (input_str, codecs.ITA2_STANDARD, writer)
print (output_buffer.getvalue())

This would output the following:

*okok kK

*x Kk,

* o kX

2.3.2 Decoding example

from io import BytesIO
from baudot import decode_to_str, codecs, handlers

code = b'1f14011212180413180a12091b0d"

with BytesIO(code) as code_stream:
reader = handlers.HexBytesReader (code_stream)
print (decode_to_str (reader, codecs.ITA2_US))

Should print:

6 Chapter 2. User Guide

https://docs.python.org/3/library/csv.html

baudot Documentation, Release 0.1.1.post2

HELLO WORLD!

2.3. Examples 7

baudot Documentation, Release 0.1.1.post2

8 Chapter 2. User Guide

CHAPTER 3

API Reference

* baudot
* baudot.core
* baudot.codecs
* baudot.handlers
— baudot.handlers.hexbytes

— baudot.handlers.tape

* baudot.exceptions

3.1 baudot

Baudot — Tools for handling stateful 5-bit encoding

baudot .decode (reader: baudot.handlers.core.BaudotReader, codec: baudot.codecs.core.BaudotCodec,

stream: 1o0.TextIOBase)))]
Decode a baudot code stream from a reader to a unicode stream, using a given codec.

Parameters
* reader — Reader instance that will read codes from an input
* codec - Codec to use for decoding
* stream — Unicode stream to write to (can be a file)

baudot .decode_to_str (reader: baudot.handlers.core.BaudotReader, codec: bau-

dot.codecs.core. BaudotCodec) — str)
Decode a baudot code stream from a reader to a unicode string, using a given codec.

Parameters

baudot Documentation, Release 0.1.1.post2

* reader — Reader instance that will read codes from an input
* codec - Codec to use for decoding
Returns Decoded Unicode string

baudot .encode (stream: io.TextIOBase, codec: baudot.codecs.core.BaudotCodec, writer: bau-

~ dot.handlers.core.BaudotWriter))))
Encode unicode characters from an input stream to an output writer, using the given codec.

Parameters
¢ stream - Unicode character stream to encode (can be a file)
* codec — Codec to use for encoding
* writer — Writer instance for the wanted output format

baudot .encode_str (chars: str, codec: baudot.codecs.core.BaudotCodec, writer: bau-

) dot.handlers.core. BaudotWriter))))
Encode unicode characters from an input string to an output writer, using the given codec.

Parameters
* chars - Unicode string to encode
* codec - Codec to use for encoding

* writer — Writer instance for the wanted output format

3.2 baudot.core

Core encoding/decoding logic of the library

All tools from this module are available from baudot for convenience.

3.3 baudot.codecs

Codecs are the tools used to convert encoded-data (5-bit digits) into Unicode characters and back.

baudot .codecs.ITAl CONTINENTAL
Codec for the original Baudot code, a.k.a. ITA1 continental

baudot .codecs.ITA2_STANDARD
Codec for the standard Baudot-Murray code, a.k.a. ITA2

baudot.codecs.ITA2_ US
Codec for the US variant of the Baudot-Murray code, a.k.a. US-TTY

class baudot.codecs.BaudotCodec
Bases: abc.ABC

Abstract Base Class for a Codec
Subclasses must implement encode () and decode ()

decode (code: int, state: baudot.codecs.core.Shift) — Union[str, baudot.codecs.core.Shift]
Abstract method for decoding a single code.

encode (value: Union[str, baudot.codecs.core.Shift], state: baudot.codecs.core.Shift) — Tuple[int, bau-

dot.codecs.core.Shift]
Abstract method for encoding a single character or state shift

10 Chapter 3. API Reference

baudot Documentation, Release 0.1.1.post2

class baudot.codecs.Shift (name)
Bases: tuple

name
Alias for field number O

class baudot.codecs.SimpleTabledCodec (name: str, tables: Dict[baudot.codecs.core.Shift,

List[Union[str, baudot.codecs.core.Shift]]])
Bases: baudot .codecs.core.BaudotCodec

Creates a codec based on a character table.

The input format must be a dictionary of which the keys are the possible states (instances of Shift) and the
values are lists of length 32 exactly, containing characters or shifts.

The Shift instances are the only control characters this library knows of. Any other must be taken from
ASCII/Unicode.

decode (code: int, state: Optional[baudot.codecs.core.Shift]) — Union[str, baudot.codecs.core.Shift]
Get the character or state shift corresponding to a given code in a given state.

Parameters

¢ code — Code to look up

* state — State to apply. This may be None, so that a the state can be initialized.
Returns Decoded character or state shift

encode (value: Union[str, baudot.codecs.core.Shift], state: baudot.codecs.core.Shift) — Tuple[int, bau-

dot.codecs.core.Shift]
Get the code of the given character of Shift for this codec.

Actually, this logic returns not only the code but also the state required for this code. The current state
should also be passed so that more complicated cases can be solved.

Parameters
¢ value — Value (character or state shift) to encode
* state — Current state of encoding

Returns Code for this value, and required state

3.4 baudot.handlers

The handlers are interfaces to read and write 5-bit data from a variety of formats.

class baudot.handlers.BaudotReader
Bases: abc.ABC

Abstract Base Class for a reader

class baudot.handlers.BaudotWriter
Bases: abc.ABC

Abstract Base Class for a writer

write (code: int)
Write a single code to the output

3.4. baudot.handlers 11

baudot Documentation, Release 0.1.1.post2

3.4.1 baudot.handlers.hexbytes

Handler for reading and writing 5-bit codes as a hexadecimal bit stream.

class baudot.handlers.hexbytes.HexBytesReader (stream: io.BufferedlOBase)
Bases: baudot .handlers.core.BaudotReader

Reader for hexadecimal 5-bit streams

class baudot.handlers.hexbytes.HexBytesWriter (stream: io.BufferedlOBase)
Bases: baudot .handlers.core.BaudotWriter

Writer for hexadecimal 5-bit stream

write (code: int)
Writes a code as an hexadecimal value

3.4.2 baudot.handlers.tape

Handler for reading and writing to pretty tape-like formatted text

For example, the tape might look like::

*kk kK
* x
*
* .k
* Lk
* K
* .
* Lk
* ko,
* Lk
* .k
* . K
*k kK
* Kk, K

(Which reads ‘HELLO WORLD!")

class baudot.handlers.tape.TapeConfig
Bases: tuple

Object for storing a tape representation format.

blank
Alias for field number 1

punch
Alias for field number O

sep
Alias for field number 2

class baudot.handlers.tape.TapeReader (stream: io. TextlOBase, config: bau-
dot.handlers.tape.TapeConfig = TapeCon-
fig(punch="*", blank="", sep="."))
Bases: baudot .handlers.core.BaudotReader

Reader class for tape-like data.

12 Chapter 3. API Reference

baudot Documentation, Release 0.1.1.post2

class baudot.handlers.tape.TapeWriter (stream: 10.TextIOBase,
dot.handlers.tape.TapeConfig

fig(punch="*", blank="", sep="."))

Bases: baudot .handlers.core.BaudotWriter
Writer class for tape-like data.

write (code: int)
Writes a code to tape

3.5 baudot.exceptions

Custom exceptions for the Baudot library

exception baudot.exceptions.BaudotException
Bases: Exception

Core exception class for this library

exception baudot.exceptions.DecodingError
Bases: baudot.exceptions.BaudotException

Raised on decoding error

exception baudot.exceptions.EncodingError
Bases: baudot .exceptions.BaudotException

Raised on encoding error

exception baudot.exceptions.IncoherentTable
Bases: baudot.exceptions.BaudotException

Raised when an encoding/decoding table is not valid

exception baudot.exceptions.ReadError
Bases: baudot.exceptions.BaudotException

Raised when reading a 5-bit stream fails

exception baudot.exceptions.WriteError
Bases: baudot.exceptions.BaudotException

Raised when writing a 5-bit stream fails

config:

bau-
TapeCon-

3.5. baudot.exceptions

13

baudot Documentation, Release 0.1.1.post2

14 Chapter 3. API Reference

CHAPTER 4

Indices and tables

* genindex
* modindex

e search

15

baudot Documentation, Release 0.1.1.post2

16 Chapter 4. Indices and tables

Python Module Index

b

baudot, 9

baudot .codecs, 10
baudot.core, 10

baudot .exceptions, 13
baudot.handlers, 11
baudot.handlers.hexbytes, 12
baudot .handlers.tape, 12

17

baudot Documentation, Release 0.1.1.post2

18 Python Module Index

Index

B

baudot (module), 9

baudot.codecs (module), 10

baudot.core (module), 10
baudot.exceptions (module), 13
baudot.handlers (module), 11
baudot.handlers.hexbytes (module), 12
baudot.handlers.tape (module), 12
BaudotCodec (class in baudot.codecs), 10
BaudotException, 13

BaudotReader (class in baudot.handlers), 11
BaudotWriter (class in baudot.handlers), 11
blank (baudot.handlers.tape. TapeConfig attribute), 12

D

decode() (baudot.codecs.BaudotCodec method), 10

decode() (baudot.codecs.SimpleTabledCodec method),
11

decode() (in module baudot), 9

decode_to_str() (in module baudot), 9

DecodingError, 13

E

encode() (baudot.codecs.BaudotCodec method), 10

encode() (baudot.codecs.SimpleTabledCodec method),
11

encode() (in module baudot), 10

encode_str() (in module baudot), 10

EncodingError, 13

H

HexBytesReader (class in baudot.handlers.hexbytes), 12
HexBytesWriter (class in baudot.handlers.hexbytes), 12

IncoherentTable, 13

ITA1_CONTINENTAL (in module baudot.codecs), 10
ITA2_STANDARD (in module baudot.codecs), 10
ITA2_US (in module baudot.codecs), 10

N

name (baudot.codecs.Shift attribute), 11

P

punch (baudot.handlers.tape. TapeConfig attribute), 12

R

ReadError, 13

S

sep (baudot.handlers.tape. TapeConfig attribute), 12
Shift (class in baudot.codecs), 10
SimpleTabledCodec (class in baudot.codecs), 11

T

TapeConfig (class in baudot.handlers.tape), 12
TapeReader (class in baudot.handlers.tape), 12
TapeWriter (class in baudot.handlers.tape), 12

W

write() (baudot.handlers.BaudotWriter method), 11

write() (baudot.handlers.hexbytes.HexBytesWriter
method), 12

write() (baudot.handlers.tape. TapeWriter method), 13

WriteError, 13

19

	About this library and the Baudot code
	What is the Baudot code?
	How did it work?
	So, why this library?
	More resources

	User Guide
	Library walk-through
	Basic usage
	Examples

	API Reference
	baudot
	baudot.core
	baudot.codecs
	baudot.handlers
	baudot.exceptions

	Indices and tables
	Python Module Index

